HDFS API如何读取数据库? (hdfs api 读取数据库)
在现代企业应用程序中,将数据存储在数据库中已成为常见的实践。但是,当需要快速、有效地分析海量数据时,传统的数据库存储方案往往不能满足需求。这时,分布式文件系统如Hadoop Distributed File System(HDFS)随着其可扩展性、高效性和强大的易于使用的API等优点而变得越来越流行。在很多情况下,需要将数据从数据库中提取并存储到HDFS中以进行进一步的数据处理,而HDFS API是实现这一过程的重要工具。本文将介绍如何使用HDFS API从数据库中读取数据。
HDFS API简介
HDFS API是一组易于使用且强大的容器类和函数,用于管理Hadoop分布式文件系统中的数据。它由Java编写,提供了一种简单且可扩展的编程界面,以便开发人员能够通过编程语言读取、写入和操作HDFS中的数据。 HDFS API提供了以下重要功能:
1. FileSystem类:提供了连接到Hadoop集群并访问底层文件系统的方法。
2. Path类:表示在Hadoop文件系统中的文件或目录的路径。
3. FSDataInputStream类:用于从HDFS中读取数据。
4. FSDataOutputStream类:用于向HDFS中写入数据。
现在,让我们来看看如何使用HDFS API从数据库中读取数据。
HDFS API读取数据库
虽然HDFS API并不是专门用于读取数据库的,但是可以使用它来实现这一目的。 HDFS API具有广泛的应用程序,可用于从各种数据源自动读取数据,包括数据库等。以下是如何使用HDFS API读取数据库的步骤:
1. 加载JDBC驱动程序:使用JDBC连接到数据库之前,首先需要加载适当的JDBC驱动程序。例如,如果要将MySQL数据库连接到Java应用程序中,则需要加载mysql-jdbc-driver包。
2. 连接到数据库:使用Java中的JDBC API,开发人员可以轻松地创建到数据库的连接。Java应用程序中的语句类可用于向数据库中发出SQL查询语句。
3. 将数据存储到HDFS:一旦从数据库中提取数据,就可以使用HDFS API将其存储到Hadoop文件系统中。
让我们一步步介绍如何使用HDFS API从MySQL数据库中读取数据。
步骤1:加载JDBC驱动程序
在Java中使用JDBC API连接到MySQL数据库之前,首先需要加载MySQL JDBC驱动程序。以下是加载MySQL JDBC驱动程序的代码:
`Class.forName(“com.mysql.jdbc.Driver”);`
步骤2:建立JDBC数据库连接
在加载JDBC驱动程序之后,使用JDBC API创建连接到MySQL数据库。以下是连接到MySQL数据库的代码:
“`
Connection con=DriverManager.getConnection(
“jdbc:mysql://localhost:3306/mydatabase”,”root”,”password”);
“`
在上述代码中,“mydatabase”是MySQL数据库名称,“root”是用户名,“password”是密码。注意,如果要运行此代码,则需要安装并运行MySQL服务器。
步骤3:将数据存储到HDFS
一旦从MySQL数据库中提取数据,就可以使用HDFS API将其存储到Hadoop文件系统中。以下是一个在Hadoop文件系统中创建新文件并将数据写入文件的示例代码:
“`
Configuration conf = new Configuration();
Path filepath = new Path(“/myhdfsfile.txt”);
FileSystem fs = FileSystem.get(filepath.toUri(), conf);
FSDataOutputStream out = fs.create(filepath);
out.writeUTF(“This is my data”);
out.close();
“`
如果要将从MySQL数据库中检索的数据存储到Hadoop文件系统中,则需要将读取的数据写入FSDataOutputStream对象中,然后使用write()方法将其写入Hadoop文件系统中。
HDFS API如何读取较大的数据?
HDFS API可以很好地处理大数据,因为它允许按块处理数据。将数据写入HDFS时,HDFS API将其分成块,并存储在不同的数据节点上。每个块的默认大小为64 MB,但可以通过更改Hadoop配置文件中的设置进行更改。这意味着我们可以使用单个读取调用在HDFS API中读取大文件。例如,在HDFS API中,可以像这样读取一个大小为1GB的文件:
“`
Configuration conf = new Configuration();
Path filepath = new Path(“/mylargehdfsfile.txt”);
FileSystem fs = FileSystem.get(filepath.toUri(), conf);
FSDataInputStream in = fs.open(filepath);
byte[] buffer = new byte[1024];
int bytesRead = 0;
while ((bytesRead = in.read(buffer)) != -1) {
// process the buffer here
}
“`
上述代码定义了一个Filesystem对象和一个FSDataInputStream对象,然后读取文件并按1KB缓冲区逐块处理数据。
结论
HDFS API是一个强大的工具,可用于从各种数据源自动读取数据,包括数据库。使用HDFS API读取数据库时,首先需要加载JDBC驱动程序,然后使用JDBC API连接到数据库并检索数据,最后使用HDFS API将数据存储到Hadoop文件系统中。同时,HDFS API可以很好地处理大数据,因此可以使用它来处理几GB或几TB的数据。在使用HDFS API读取数据库时,请注意验证数据类型和转换格式以确保数据能够正确地存储在Hadoop文件系统中。
相关问题拓展阅读:
- HDFS笔记
HDFS笔记
1.Hadoop
分布式
文件系统。特点:性能高、效率高、速度快
2.可以在廉价的机器上运行的
可容错
文件系统。
当集群中有机器挂掉时,HDFS会自动将挂掉的机器上的任务分配给正常的机器,使任务继续保持正常工作。
2.HDFS处理更加容易。当对一个大型文件进行写操作时,如果将该文件整个写入一个节点,那么该节点的负载便会急剧增加,这样就丧失了分布式文件系统的意义。所以,应该利用HDFS将文件拆分成不同的块,然后将不同的块分配到不同的节点上去,此时,DFS就需要管理者确定文件如何进行拆分,以及每一个块应该分配到哪一个节点。对文件进行操作时,在单机情况下,首先需要知道文件被拆分成多少块,每一个块被放在了哪一个节点上,以及块之间的顺序(文件的粘连)。而HDFS的出现,使扒镇得分布式文件集群不再需要人进行管理,利用HDFS读取文件时,我们不需要关心文件如何拆分,分配,粘连。只用告诉HDFS文件的路径即可。
HDFS的指令类似于linux下的指令。
查看文件:hdfs dfs -ls /查询的文件目录
删除文件:hdfs dfs -rm r /删除的文件
创建文件夹:hdfs dfs -mkdir /文件夹名称
上传文件至HDFS:hdfs dfs -put 需要上传的文件 /上传的文件路径
为什么需要学习HDFS结构?
1.面试中,能够运用于所有分布式文件系统设计。
既然分布式系统下是多节点运行,那么节点之间是否通信?slave节点只接受来自master节点的命令,向master节点发送心跳指令,slave节点之间不会主动通信。
a.Master slaver 模式:
1.High consistency:一致性。当文件中的一个数据块写入slave节点时,当且仅当数据块被成功写入到所有备份的slave节点,slave节点向client反馈写入操作成功,否则,重传写入;
2.Simple design:易设计:不需要考虑子节点如何通信。只需要考虑主节点的工作;
3.单master节点不具有鲁棒性。
b.Peer peer 模式:
1.所有的读写操作均匀分布在每一个节点上,每一个节点的负载不会很高;
2.任意一个节点挂掉不会影响其他节点;
3.低一致性。没有数据的复制步骤。
2.更好的理解hadoop生态系统
a.master节点会传输数据吗?
不会,神孙master节点只接收client的请求,决定哪一个slave节点进行读写操作,然后,client直接与slave节点进行通信。如果数据从master节点传输,那么master节点就会成为影响数据传输的瓶颈。
b.slave节点如何存储数据?
整个大文件?小的文件块?。HDFS借鉴GFS的设计理念,以block为传输单位,将大文件拆春瞎粗分成一个一个小文件,而一个小文件就是block。block的大小可以由Configuration定义,默认大小是128M。
c.谁来决定将文件拆分成块?
master?slave?。两者都不是,由HDFS client决定将大文件拆分成block(块)。HDFS的目的是将所有的节点包装起来,可以理解成将所有的节点放在一个黑箱里,我们不需要知道黑箱里到底发生了什么,只需要告诉黑箱需要做什么工作,这里的HDFS client相当于HDFS与user通信的中间媒介。HDFS client相当于一个软件包(api),可以存放在master或者slave或者额外的一个新节点上。
写入in memory失败(ACK出现问题)时,master会重新选择3个新的slave节点。
hdfs api 读取数据库的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于hdfs api 读取数据库,HDFS API如何读取数据库?,HDFS笔记的信息别忘了在本站进行查找喔。