Python下的Softmax回归函数的实现方法(推荐)


Softmax回归函数是用于将分类结果归一化。但它不同于一般的按照比例归一化的方法,它通过对数变换来进行归一化,这样实现了较大的值在归一化过程中收益更多的情况。

Softmax公式

查看图片

Softmax实现方法1

import numpy as np
def softmax(x):
 """Compute softmax values for each sets of scores in x."""
 pass # TODO: Compute and return softmax(x)
 x = np.array(x)
 x = np.exp(x)
 x.astype('float32')
 if x.ndim == 1:
  sumcol = sum(x)
  for i in range(x.size):
   x[i] = x[i]/float(sumcol)
 if x.ndim > 1:
  sumcol = x.sum(axis = 0)
  for row in x:
   for i in range(row.size):
    row[i] = row[i]/float(sumcol[i])
 return x
#测试结果
scores = [3.0,1.0, 0.2]
print softmax(scores)

其计算结果如下:

[ 0.8360188 0.11314284 0.05083836]

Softmax实现方法2

import numpy as np
def softmax(x):
 return np.exp(x)/np.sum(np.exp(x),axis=0)

#测试结果
scores = [3.0,1.0, 0.2]
print softmax(scores)

以上这篇Python下的Softmax回归函数的实现方法(推荐)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持积木网。

详解python之简单主机批量管理工具
今天做了一个很简单的小项目,感受到了paramiko模块的强大,也深感自己Linux的功力不行~~一、需求二、简单需求分析及流程图需求很少,我就简单地说

python 编程之twisted详解及简单实例
python编程之twisted详解前言:我不擅长写socket代码。一是用c写起来比较麻烦,二是自己平时也没有这方面的需求。等到自己真正想了解的时候,才发现自

Python爬虫包 BeautifulSoup 递归抓取实例详解
Python爬虫包BeautifulSoup递归抓取实例详解概要:爬虫的主要目的就是为了沿着网络抓取需要的内容。它们的本质是一种递归的过程。它们首先需要获得网